Geodesic motion on closed spaces: Two numerical examples

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic Motion on Closed Spaces

Two manifolds with genus g = 0 are given. In one the geodesic motion is apparently integrable. In the second example the geodesic flow, shows the presence of chaotic regions.

متن کامل

Numerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces

This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.

متن کامل

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Two Ä-closed Spaces Revisited

Recently, R. M. Stephenson has used the Continuum Hypothesis to construct two Ä-closed, separable regular, first countable, noncompact Hausdorff spaces. We show that the assumption of the Continuum Hypothesis can be removed by replacing a lemma used in the original construction to deal with arbitrary almost-disjoint families by the construction of a particular almost-disjoint family. We also sh...

متن کامل

The Second Closed Geodesic on Finsler Spheres

We show the existence of at least two geometrically distinct closed geodesics on an n-dimensional sphere with a bumpy and non-reversible Finsler metric for n > 2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 2012

ISSN: 0375-9601

DOI: 10.1016/j.physleta.2011.11.041